Restricted Normal Cones and Sparsity Optimization with Affine Constraints

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Restricted Normal Cones and Sparsity Optimization with Affine Constraints

The problem of finding a vector with the fewest nonzero elements that satisfies an underdetermined system of linear equations is an NP-complete problem that is typically solved numerically via convex heuristics or nicely-behaved nonconvex relaxations. In this paper we consider the elementary method of alternating projections (MAP) for solving the sparsity optimization problem without employing ...

متن کامل

Structural Properties of Affine Sparsity Constraints

We introduce a new constraint system for sparse variable selection in statistical learning. Such a system arises when there are logical conditions on the sparsity of certain unknown model parameters that need to be incorporated into their selection process. Formally, extending a cardinality constraint, an affine sparsity constraint (ASC) is defined by a linear inequality with two sets of variab...

متن کامل

Trading Accuracy for Sparsity in Optimization Problems with Sparsity Constraints

We study the problem of minimizing the expected loss of a linear predictor while constraining its sparsity, i.e., bounding the number of features used by the predictor. While the resulting optimization problem is generally NP-hard, several approximation algorithms are considered. We analyze the performance of these algorithms, focusing on the characterization of the trade-off between accuracy a...

متن کامل

Online Linear Optimization with Sparsity Constraints

We study the problem of online linear optimization with sparsity constraints in the 1 semi-bandit setting. It can be seen as a marriage between two well-known problems: 2 the online linear optimization problem and the combinatorial bandit problem. For 3 this problem, we provide two algorithms which are efficient and achieve sublinear 4 regret bounds. Moreover, we extend our results to two gener...

متن کامل

Online Linear Optimization with Sparsity Constraints

We study the problem of online linear optimization with sparsity constraints in the 1 semi-bandit setting. It can be seen as a marriage between two well-known problems: 2 the online linear optimization problem and the combinatorial bandit problem. For 3 this problem, we provide two algorithms which are efficient and achieve sublinear 4 regret bounds. Moreover, we extend our results to two gener...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Foundations of Computational Mathematics

سال: 2013

ISSN: 1615-3375,1615-3383

DOI: 10.1007/s10208-013-9161-0