Restricted Normal Cones and Sparsity Optimization with Affine Constraints
نویسندگان
چکیده
منابع مشابه
Restricted Normal Cones and Sparsity Optimization with Affine Constraints
The problem of finding a vector with the fewest nonzero elements that satisfies an underdetermined system of linear equations is an NP-complete problem that is typically solved numerically via convex heuristics or nicely-behaved nonconvex relaxations. In this paper we consider the elementary method of alternating projections (MAP) for solving the sparsity optimization problem without employing ...
متن کاملStructural Properties of Affine Sparsity Constraints
We introduce a new constraint system for sparse variable selection in statistical learning. Such a system arises when there are logical conditions on the sparsity of certain unknown model parameters that need to be incorporated into their selection process. Formally, extending a cardinality constraint, an affine sparsity constraint (ASC) is defined by a linear inequality with two sets of variab...
متن کاملTrading Accuracy for Sparsity in Optimization Problems with Sparsity Constraints
We study the problem of minimizing the expected loss of a linear predictor while constraining its sparsity, i.e., bounding the number of features used by the predictor. While the resulting optimization problem is generally NP-hard, several approximation algorithms are considered. We analyze the performance of these algorithms, focusing on the characterization of the trade-off between accuracy a...
متن کاملOnline Linear Optimization with Sparsity Constraints
We study the problem of online linear optimization with sparsity constraints in the 1 semi-bandit setting. It can be seen as a marriage between two well-known problems: 2 the online linear optimization problem and the combinatorial bandit problem. For 3 this problem, we provide two algorithms which are efficient and achieve sublinear 4 regret bounds. Moreover, we extend our results to two gener...
متن کاملOnline Linear Optimization with Sparsity Constraints
We study the problem of online linear optimization with sparsity constraints in the 1 semi-bandit setting. It can be seen as a marriage between two well-known problems: 2 the online linear optimization problem and the combinatorial bandit problem. For 3 this problem, we provide two algorithms which are efficient and achieve sublinear 4 regret bounds. Moreover, we extend our results to two gener...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Foundations of Computational Mathematics
سال: 2013
ISSN: 1615-3375,1615-3383
DOI: 10.1007/s10208-013-9161-0